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Complete thermodynamic equations of state of solids are constructed either on a phenome-
nological basis [1], or on the basis of model representations at the atomic level [2]. The
first way necessitates a thorough preliminary experimental study of the thermodynamic
properties of the material as a basis for establishing a system of partial differential equa~
tions. Inthe second case a valid model leads not only to explicit functional relations be-
tween thermodynamic quantities over a broad range of values of the parameters, but also
makes it possible to relate the macroscopic characteristics of the material to its atomic
characteristics and to discover the mechanism of the phenomena under consideration. Since
a model without parameters is generally impossible, it is sufficient to use the experimental
values of a few easily measured quantities to determine the adjustable parameters. Thus,
various forms of Mie—Gruneisen equations of state are obtained depending on the specific
assumptions about the structure of the material, the strength of the interatomic binding, and
the nature of the motion of the microparticles which constitute the material, Using the quasi-
harmonic approximation of solid-state theory and the Debye model of thermal vibrations, we
derive a caloric equation of state which enables us to develop a complete thermodynamic de-
scrlpt%n for a number of metals.

We derive an expression for the internal energy as a function of the internal variables by using the quasi-
harmonic approximation of solid state theory and the Debye model of thermal vibrations, assuming that the
effect of the thermal excitation of the electrons of a metal is negligibly small in comparison with the lattice
part.

v For high temperatures we have [3]
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‘where y=0/T; Eq and ©, cold energy and the characteristic temperature, which depend only on the volume
strain; T, temperature; k, Boltzmann constant; N, number of particles. The expansions in Egs. (1) and (2) con~
verge rapidly for most metals beginning at room temperatures, i.e., temperatures at which shock experiments
are generally performed. This enables us to limit ourselves to quadratic terms in these expansions., Elimi-
nating the temperature from (1) and (2) we obtain

E=Ec-- 3NkO¢(q), ¢(q) = eq-—4/3(1 + 92“/3—4’). &)

It is convenient to transform Eq. (3) to a form which explicitly separates the energy of isentropic compression
E; with the entropy S, corresponding to the initial conditions (ordinarily T,= 300°K, p=0) from the entropy

energy Eg

E=E; +Es, Eg—3Nk[, o208l (1)

where the prime denotes differentiation with respect to q.
Equation (4) is valid at room temperatures and above., A similar expression can be derived for T< @

in'this case ¢ @) ~q4/ 3, We were not able to construct an explicit expression for the internal energy as afunc-
tion of the entropy for intermediate temperatures. Henceforth we consider only high temperatures.
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TABLE 1
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Material 11 i2 i1 11277123 " Ve o __1.(121) —rﬁ)
kbar
Cu 2002 | 4655 | 22580 163201 1030 | 10,5 2,01 2,2 4,2
Al 1113 ] 6101 13290 | 2450 | 480 7,6° 2,18 0,5 2,5
Pb 529 | 364 5760 | 2190 ] 560 4,1 2,41 2,7 4,7

It is clear from the form of Eq, (3) that the entropy and strain do not enter the internal energy in equiva™
lent ways. The dependence of E on S does not involve the properties of the particular material. Hence it follows
directly that the specific heat Cy; depends only on the entropy

- 9El3s 1 20/3-a9)
CV—‘E_QE/(?_SE—SNk(i—%e q).

To make the dependence of E on the strain more specific it is expedient to consider separately stresses of
moderate intensity and stresses produced behind strong shock fronts.

The treatment of the propagation of stress waves of moderate intensity in a material is closely related
to the tensor character of the equations of state. Ordinarily, equations of state following from the generalized
Hooke's law are employed for these purposes. Thermal effects are neglected.

Using Eq. (4) for the internal energy we derive complete thermodynamic equations of state in tensor
form. We introduce the distortion tensor A to characterize the change in the radius vector a as a result of a
uniform strain in the laboratory Cartesian coordinate system a=(1 +A)a,. The components of the finite strain
tensor € are expressed in terms of A in the form

e =(1/2)(A + A* - A*A),

where the asterisk denotes transposed matrices. We expand E in a series in & for the initial state
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where Ci(lzc)mn and C(3) , the components of the second and third order adiabatic elastic moduli tensors, are

nr,
the corresponding dlerlvatlves of Ei with respect to &; 1“[(11{) and Fi(lzgmn are the components of the first and
second Gruneisen coefficient tensors.

Taking account of the small contribution of the entropy term in comparison with the isentropic part in
the range of strains under consideration, we can limit ourselves to quadratic terms in €,

The components of the stress Xji as functions of the distortion tensor A
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Xo= 5 [+ A 5o (t + A%, (6)

the temperature -
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and other thermodynamic quantities can be derived from (5) in the usual way.

The fourth rank tensor C® for an isotropic material is characterized by the two Lamé coefficients; A
and y; the third order elastic moduli tensor C® is reduced to three Murnaghan coefficients: I, m, andn, In
the Votgt notation A=Cf2), u=CH-c)/2, 1=c{/2, m=CH-c /4, n=cff) +2ch)- 3¢/, The IV
tensoris transicg)med into a sphericaltensor with a component v, (the thermodynamic Gruneisen coefficient) and
the quantities I5 - . are determined from the temperature dependence of the second~order elastic moduli

: 1 80, | 605G
I‘(i%_l)mn = —%, (—a—B % + "%“ — OinBmn + 8imBan + 8inbpm |,

where « is the volume coefficient of expansion, B is the bulk modulus, and the derivatives of C® with respect
to the pressure p are expressed in terms of the components of the tensor C ),

There are practically no reliable values of the Murnaghan coefficients in the literature, Therefore, we
determine them, and for generality the Lamé coefficients also, by using the Voigt—Hill—Reuss scheme [4] to
relate the elastic moduli of an isotropic polycrystal to the known values for a single erystal,

The coefficients in Eq. (5) determined in this way are listed in Table 1 for three metals.
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TABLE 2

», kbar Cu Al Pb
To=300 °K G, kbar v @, kbar v G, kbar v

—10 457 0,345 233 0,357 70 0,407

0 473 0,345 254 0,354 84 | 0,408

20 503 0,346 | 284 0,351 102 0,407

40 530 0,348 311 0,350 113 0,441

60 553 0,349 334 0,350 121 0,415

80 575 0,351 355 0,350 | 125 0,420

100 59 0,352 372 0,351 127 0,424

Table 2 lists the calculated values of the effective shear modulus G and Poisson's ratio v for isothermal
compression up to a pressure of 100 kbar, The shear modulus increases by ~50%, but v varies much more
slowly with pressure. For copper and lead v increases monotonically by 2 and 4.5% respectively. For alu-
minum v first decreases, and then above ~50 kbar it begins to increase. The decrease of ¥ with pressure
for aluminum and its increase for copper and lead are in good agreement with the estimate of 8»/8p madein[5].

A comparison of the equations of state following from the generalized Hooke's law and from Eq. (6) showed
that beginning with a strain of 2-3% there is an appreciable discrepancy in the results. For example, for a
volume strain of 5% the difference in pressure is ~20%.

Analysis of the calculated temperature dependences of the coefficient of thermal expansion, the specific
heat C, and the quantities considered above, showed that the equations of state (6) correctly deseribe the be-
havior of a material for pressures up to 100 kbar and temperatures from ~ 200°K to the melting point,

These equations of state can be used to construct models of elastoplastic media to solve specific prob-
lems of the mechanics of a continuous medium, in particular problems related to the repeated plastic defor-
mation of a material, leading to a substantial increase in entropy.

To analyze the state of material attainable behind strong shock fronts and accompanying phenomena such
as heating and isentropic unloading it is sufficient in a number of cases to consider volume strains only, Tak-
ing account of the appreciable increase in entropy in shock loading, it is reasonable in this case to retain only
the first term in ¢ @), which corresponds to a constant specific heat Cyy =3Nk,

The basic relations in this approximation have the form

E=E; + 3NkT, 5 (e —1); @
. [ ]
3NkT (] 5}
p=pi+ Gt yg (e —1), T=T,g e, ®)
where the Gruneisen coefficient v is related to ® by the equation

Vs
68 =0, exp (S’ % dV). ©)

v

Unknown functions E; and v enter Eqs. (7)-(9). An analysis of numerous calculations of the Gruneisen
coefficient shows that ¥ (V)/V can be assumed approximately constant and equal to v,/V,. Then ® =0, exp (y,(1—
x)), x=V/V,. Any interpolation expression which can represent the cold compression energy E. can be used
to specialize the dependence of the energy of isentropic compression Ei on volume, Certain considerations
show that for pressures in the megabar region, when the shell structure of the atoms has still not been dis-
turbed [6], this dependence must be exponential

0
o B [exp (28 (1 — 25 — Zexp (B (4 — 211 (10)

This potential is widely used in the literature to analyze bulk properties of a material, and calculations
show that it is a good approximation. The parameters in (10) are determined from the condition that the shock
adiabat and the isentrope pj have contact of the second order, If a linear relation D=a+bu is used between
the shock front velocity and the mass velocity, we have

B} =pa?, Pp=2(2—1), (11)

9
Ei =‘2"V

where p, is the density.
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Fig. 1
TABLE 3
Parameters ' Cu Al ‘ Pb Mo w U
I p, Mbar 2,05 1,0 0,47 2,8 3,44 1,16
T,*K - 5370 3500 |. 2500 7000 9350 3800
ViV, 0,648 0,645 0,700 0,657 0,650 0,700
%, km/sec 2.8 3,55 1,1 3,1 2,5 1,36
i1 P, Mbar 1,5 0,65 0,25 2,25 2,85 0,8
%, km/sec 2,3 2,65 0,75 2,7 2,2 1,45
Tmp,'K. p=0 1356 933 600 2898 3659 1406
q.np(Vo), 'K . 1705 1136 692 3214 4123 1571

Equations (7)-(11) represent a completely determined system of functions which can be used to calculate
and analyze the properties of a material at high hydrodynamic pressures and high temperatures, Using these
equations we calculated shock adiabats, bulk sound speeds, the temperature behind shock fronts, residual tem-
peratures, and a number of other thermomechanical properties of a material. The most significant quantity
in the sense of interpolation properties of the expression chosen for the internal energy is the speed of sound,
since it characterizes the slope of the shock adiabat. For all the metals considered (Cu, Al, Pb, Mo, W, U)
the discrepancy between our calculations and the experimental values in {7] and the dependence of the speed
of sound on pressure calculated in [8] did not exceed a few percent up to compressions x=0,.65,

The solid curves of Fig. 1 are the calculated shock adiabats for copper in T~V and p—V variables, The
points plotted are experimental values of Pg and calculated values of Tg from [7]. They are in good agree-
ment with our calculations, The dashed curves represent unloading isentropes from the shock adiabat to zero
pressure, The isobar p=0 is on the left-hand side of Fig. 1. The plotted points are calculated from the tem-~
perature dependence of the coefficient of thermal expansion. Similar results hold for other metals also,

It follows from the results presented above that Egs. (7)-(11) are suitable for investigating the behavior
of metals under large dynamic loads. Equations (8) make it possible to reduce the Lindemann melting criterion
relating the melting point to the characteristic temperature @ to the form [2]

9 \2/ VvV \2/3 x
Trp(V) = Bnp (V) (9_0) (T’:) = Tp(V,) 228 2=, (12)

where Tmp (Vo) is the melting point at constant volume V,. Its values calculated from Eqs. (8) and the experi-
mental melting point at zero pressure are shown in Table 3. It can be seen from (12) that within the frame-
work of the approximations chosen, the melting point is determined by the volume of the material only.

The dot—dash curve in Fig. 1 is the melting curve (12). The general character of its behavior agrees
with the experimental fact that the entropy increases on melting (the melting curve intersects the unloading
isentropes). There is a range of states on the shock adiabat where the material behind the shock front is
solid but melts in the unloading wave. The values listed in part T of Table 3 are the critical pressures, tem-
peratures, volumes, and mass velocities starting from which melting is possible in a shock wave, and the
values in part IT are the pressures and mass velocities of a shock wave beginning from which partial melting
of the unloaded material may occur. The values in part IT are considerably smaller than the corresponding
values in part 1. :
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TABLE 4
, Cu W
#Mbar [y r, ok lot, Mbar | T—Ts, K| 7—To,°K |o*,Mbar | T—T0, °K
1,00 650 0_,35 175 485 0,42 125
0,75 400 0,25 105 260 0,32 65
0,50 190 0,21 24

0,17 5 | 100

The dot—dot—dash curve in Fig. 1 is the melting curve from [9] where it was calculated for copper,
aluminum_,»andlead. There is good agreement between (12) and the corresponding relation from [9] for copper
and aluminum, For lead the melting curve from [9] is appreciably lower. This appears to result from the
fact that our calculations do not take account of the electron component, which plays an appreciable role in
lead according to estimates in the literature,

Figure 2 for copper shows the dependence of the temperature along the shock adiabat Tg and the residual
temperature Tyqg On the pressure behind a shock front for a three-stage loading. The pressures of 200 kbar
behind the first shock front and 500 kbar behind the second were chosen arbitrarily, The dashed curves indi-
cate the behavior of the relations when there are no repeated loadings. The points plotted were calculated in
[8], and Tj; is the temperature of the material in an isentropic compression,

It is clear from Fig. 2 that multistage loading has an appreciable effect on the T—p diagram. As the
number of loading stages i{s increased the slope of the Tg {p) curve decreases, while the residual temperature
remains practically constant over a wide range of pressures. This behavior of shock adiabats indicates that
isentropic (really quasiisentropic) compression can be achieved by a small number of successive loadings,

In Fig. 3 the solid curves for copper show the dependence of the residual temperature on the pressure
p behind the secondary shock front as a function of the pressure p* in the primary wave, The open curves
show the dependence of the residual temperature on p* for a fixed pressure behind the secondary wave front,
Tt can be seen from Fig, 3 that there is a certain pressure in the primary wave which ensures the minimum
residual temperature after isentropic unloading from the secondary adiabat witha givenpressure. The optimum
value of p* is 30~40% of the pressure in the secondary wave, and the residual temperature is approximately a
factor of four lower than with a single loading up to the same pressure. Table 4 shows the corresponding
values for copper and tungsten. The first column gives the pressure p' on the shock adiabat; the second and
fifth columns give the residual temperatures after a single loading to a pressure p'; the third and sixth col-
umns give the optimum pressure p* in the first wave; the fourth and seventh columns give the minimum resi-
dual temperatures which can be obtained in two-stage loading to the pressure p'.

The proposed equations of state, based on the representation of the internal energy as the sum of the
isentropic compression energy and the entropy energy, are superior to existing equations in permitting a
simpler treatment of isentropic processes, which is particularly important in the analysis of unloading pro-
cesses., By introducing the characteristic temperature into the entropy part the melting curve can be directly
related to the equation of state of the material in terms of the Lindemann melting criterion, In contrast with
[1] the proposed melting criterion (12) correctly describes the behavior of the entropy during melting, and is
considerably more convenient in practical use than [9].

The results obtained can be used directly to develop models of continuous media and to analyze the be-
havior of a material in a dynamic action.
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DETERMINATION OF THE BEHAVIOR OF A STANDARD
LINEAR BODY IN A PLASTOMERE OF PLANE-PARALLEL SHEAR

P. M. Gorbunov UDC 539.374

Consider the behavior of a plastomere containing an easily deformed material, whose local mechanical
properties are described by a model of a standard linear body [1-4], represented by three physical quantities:
the- viscosity 77, the instantaneous shear modulus G, and the long-term shear modulus 4.

A plastomere, intended for investigating nonflowing materials, is shown schematically in Fig. 1, where 1
is a steel plate rigidly connected to the instrument, 2 is the specimen of thickness I, 3 is the sheared rigid
plate, 4 is an indicator rod rigidly attached to the sheared plate, 5 is a retainer for fixing the initial state of
the system and for producing the required initial conditions of motion of the plate, 6 is a pulley with a reduced
moment of inertia T and external radius R, M, is the reduced mass of the sheared plate and the attached rod,
P, and P, are the loads attached to the sheared plate, u(x, t) is the displacement function of an infinitely thin
vertical layer of the material investigated in the direction in which the external forces of plane~parallel shear
act, x is the axis of coordinates, and t is the time. The load P, is connected to the plate with a steel wire.

The specimen used has a rigidity much less than the rigidity of the instrument parts {5]. In the initial state
the position of the rod is held rigidly by means of the retainer. At the instant of time t=0 the upper end of the
rod is released from the retainer and the plate begins to move under the action of the resulting load P=Py +
Mgg—P,. Then the connecting mass [5] M =M, + (P; +P)/g +1/R%, where P;/g, Py/g, and I/R? are the reduced
masses of the loads Py and P; and of the rotating pulley, and g is the acceleration due to gravity, It is assumed
that the force of friction f in the bearings of the pulley is much less than the load P, so that it can be neglected
[5]. This system differs considerably from the plastomere used in [5-7]. Tts distinguishing features are as
follows,

1. Since the shear load is the complex quantity P=P;~P, +Myg, and M =M, + (P, +Py)/g +1/R?, for the
same values of 1, R, and P, one can increase or decrease the value of M over a wide range by varying P; and
P, while keeping P constant. This enables one to investigate materials both when the system is oscillating and
under aperiodic conditions.

2. The system enables one to eliminate f by removing the load P,.

Since the above viscoelastic characteristics of easily deformed materials may depend, in particular, on
the temperature T [4] and this may cause deformation of the specimen, the experimental conditions must be
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